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Robust Estimation of Generalized Estimating Equmatiben Data Contain Outliers

Khoirin Nisa"",

Abstract—In this paper, a robust procedure for estimatinggn multivariate normal distribution.

parameters of regression model when generalizeimasig

equation (GEE) applied to longitudinal data thatteins outliers is
proposed. The method is called ‘iteratively rewégghleast trimmed
square’ (IRLTS) which is a combination of the itéraly

reweighted least square (IRLS) and least trimmedarsqLTS)

methods. To assess the proposed method a simulstiioly was
conducted and the result shows that the methoadksst against
outliers.
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|I. INTRODUCTION

L

regression

Netti Herawafi

data points. Gill [4] proposed a robustified likelod based
Jung and Ying]
proposed an adaptation of the Wilcoxon-Mann-Whitney
method of estimating linear regression parametrsige in
longitudinal data analysis under the working indefence
model. And recently, Abebet al [6] proposed a robust GEE
using iterated reweighted rank-based estimation.

In this paper, we adopt the LTS [7] method for mstbu
linear regression in the sense of trimming the dima
estimating the regression coefficients so thatotervations
with high residuals are not included in the paramet
estimation. In Section 2 we present a brief revidVGEE. In
Section 3 we describe our proposed method IRLTS. In
Section 4 we discuss some results from our sinmrattudy.

ONGITUDINAL studies are increasingly common in many
scientific research areas, for example in the $ocia

biomedical, and economical fields. In longitudinal ~GengrALIZED ESTIMATING EQUATION AND IRLS METHOD

studies, multiple measurements are taken on the sailvject
at different points in time. Thus, observations floe same
subject are correlated. The analysis of data fiegufrom
such studies often becomes complicated due to ittenw
subject correlation. This correlation must be cdesed for
any appropriate analysis method.

Generalized linear models (GLM) as described
McCullagh and Nelder [1] is a standard method usefit
regression models for univariate data that areupnes to
follow an exponential family distribution. The asgdion
between the response variable and the covariatgisés by
the link function. GLM assume that the observati@rs
independent and do not consider any correlatiowdss the
outcome of then observations.
introduced an approach to this correlation problesing GEE
to extend GLM into a regression setting with cated
observations within subjects.

Liang and Zeger [2],yi m]™ and Xi = [Xi, ...

LetYj, j =1, ...m,i =1, ... ,n represent thgth
measurement on thi¢h subject. There arex measurements

. . n
on subjecti and N=Zi:1n‘] total measurements. Assume

that the marginal distribution ofjys of the exponential class
b9f distributions and is given by:

f(y.6,0) = exd{yd - b(6)/ a(@) + c(y. 4

where a(.), b(.), and c() are given,8 is the canonical
parameter, angis the dispersion parameter.

Let the vector of measurements on tte subject bey;
[Yi1, ... Yimi]T with corresponding vector of meaps= [Wi, ...
X mi]T be the mxp matrix of
covariates. In general, the component¥ odre correlated but
Y; andYy are independent for amy: k. To model the relation
between the response and covariates, we can @gFession

The GEE method of Liang and Zeger gives consistefiodel similar to the generalized linear models:

estimators of the regression parameter.
estimates are consistent even when the varianoetuste is
miss-specified under mild regularity conditions. owver,
problems can occurs when data contain outlierbe method
is not robust against outliers since it is based soore
equations from the quasi likelihood method of eation.
The working correlation matrix would be affected the
outliers and also the parameter estimates. Insthiation, we
need a robust method that can minimize the effecttiers.

In recent years, a few authors have consideredstobu

methods for longitudinal data analysis. For exam@laqish
and Preisser [3] proposed a resistant versioneo&BE using
M-type estimation by involving down-weighting inéuntial
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The paeamet

g(w) =m=Xi p
wherep; = E(Yi]X;), g is a specified link function, arfii= [f1,
... Bo]T is a vector of unknown regression coefficientdbéo

estimated. The GEE for estimating thex1 vector of
regression parametefss is given by :

s)=3

i=1

op

where Vi be the covariance matrix of; modeled asVi=

Y -w ()] =0 (1)

/lAi]JZR(u)Aiﬂz, Ai is a diagonal matrix of variance function

V(ui), and R(a) is the working correlation matrix oY
indexed by a vector of parametems Solutions to (2) are
obtained by alternating between estimatioi ,af and®.

There are several specific choices of the form of
working correlation matrixRi(a) commonly used to model



2

the correlation matrix o¥i. A few of the choices are shownregressors, the proof for fixed regressors is ierlaeries of
below, one can refer to [1] for additional choicéghe his papers: [9][10].

dimension of the vectos, which is treated as a nuisance = Whennis very small, it is possible to generate all gibs
parameter, and the form of the estimatou @fre different for of sizeh to determine which one minimizes the LTS criterion
each choice. Some typical choices are: Rousseeuw and Leroy computation of LTS based oredsib

1. Ri(a) = Ro, a fixed correlation matrix. FdRo = I, the  of sizek requiresq = (Z) subsets which is usually still too

|de_nt|ty_ matrix, t_he GEE reduces to the mdependencfarge for realistic applications. Whemis small enough:
estimating equation. 1. Selecth

2. ExchangeableCor(Y; Yy ) =a, j#k. 2. Generate all possible subsets wikhobservations,
Autoregressive-1Cor(Y; ,Y;,) =qli« zind corAnpute the regression coefficients, say
_ . B, ... , _
Unstructured:Cor(Y, Y ) = @ - 3. Compute the residuals using allobservations, and
Solving for B is done with iteratively reweighted least from this the LTS criterion.
squares (IRLS). The following is the algorithm fiting the 4. The LTS estimate corresponds to til) that
specified model using GEEs [3] : minimizes the objective function (3).

1. Compute an initial estimate q}GEE, for example with

an ordinary generalized linear model assumlng|gomhm for computing LTS. The trick is to iteeah few

independence. steps on a large number of starting values, ang kee 10
2. A current estlmateBGEE is updated by regressing the(say) most promising ones. These are then usedfufor
working response vector iteration, yielding the final estimate. The resgtialgorithm
makes LTS estimation faster.
ZD_X13+ (y ) Our proposed procedure is a combination of IRLS and
LTS methods. IRLTS estimator involves computing the
onX. A new estimateﬁnew is obtained by : hyperplane that minimizes the sum of the smahestjuared
A T aoT . residuals and use the weighted least square egtmfat p in
Brew= (XTWX)*XTWZ (2)  each iteration. To motivate our estimator and feitg the
WhereWEI is a block diagona| We|ght matrix whogh fast LTS algorlthm[ll], it is convenient to write IRLTS
block is themxm matrix algorithm with involving the residuals as follow.
-1 -1
W = op;. AR (@A on Concentration-step:
"\ op R T I A 1. Chooseh observations.

3. Use ﬁnew to update n= xf;new: Hz" where 2- Computefi based oin observations using IRLS method .

H=XXTWX)txTwE, 3. Use the estimat to calculate residualsg; =Y; — &

4. Iterate until convergence. based on equatiqry = g_l(XiB) of n observations.

4. Sort|g| forj=1,..,m,i=1,..,n inascending

[ll. 1TERATIVELY REWEIGHTEDLEAST TRIMMED SQUARE order:|e; Kle, k...<[g; |.
ALGORITHM 5. Chooseh observations which have the lowdstesiduals,
we denote thé observations as subset H.
First let us briefly recall that the robust estimoat of The repetitions of concentration-step will prodace
regression parameters using LTS method is given by: iteration process.

~ h
_ ; 2 .

BLrs =argmin & 3) IRLTS algorithm:

i=1 1
which is based on the ordered absolute residuals ~ ] ]
le Kle, E..<le,|. LTS estimation is calculated by 2. Computep based o observations using IRLS by (2),

minimizing theh ordered squares residuals, wharean be we Obtai“ﬁi = g‘l(xiﬁ)_

chosen within D+ 1< h < @+ p+l’ with n and p 3. Calculate residualss; =Yij —[Iij of nobservations.
2

Chooséh observations.

being sample size and number of parameters resphcti 4. Sort|e | in ascending ordefe;; |6, ...<[ g |
Whenh = [n/Z], y LTS locates that half of the Observations‘_). Choose hl observations which have the |Oweb1
which has the smallest estimated variance. In thag, the residuals, we denote as subset H
breakdown point is 50%. Whemis set to the sample size,g  Run concentration-step on vice, and we obtain £1
LTS and ordinary least square (OLS) coincide. n

In [7] Rousseeuw and Leroy show¥? consistency and 7. Repeat step 1- step 6 fEr] times
asymptotic normality of LTS in the location—scaleodel. h
ViSek [8] extends this to the regression model withdom
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Rousseeuw and van Driessen [11] propose a fast



8. From the(m results, choose the best 10 subsets H

0=1,...,10. Table 1. Simulation Result for Longitudinal DatatwiExchangeable
9. Run concentration-step on the best 10 subsgtanll Correlation Matrix witha = 03
convergence.
10. Choose the best subset H. Case Coeff. ¢ E(Brs) E(Bgrirs) REmusirs
0% 1.00500 1.00499 1.00178
. 10%  10.08781 1.02474 0.00294
B
0
20%  17.55050 1.08504 0.00401
IV. SIMULATION STUDY
Case 30%  23.73423 1.15940 0.00657
A 0% 0.99846 0.99848 1.00278
To look at the performance of the proposed methesl, . 10% 0.99604 0.99948 0.00267
have dqne a simulatior! study by generating N=1000 A 20% 0.98073 0.99775 0.00393
observations from 200 _sub_Jects with 5 repeated ureas he 30% 0.94544 0.99577 0.00649
model for data generation is as follows:
0% 1.02179 1.01050 0.99466
Uj = BotPa X 5 10% -5.20456 1.00195 0.00577
. . . 0
wherepo=p1=1,i=1,2,... 200 ang=1,2,..,5.The covariates; 20%  -10.30572 0.95625 0.01606
are i.i.d. from a uniform distribution Unif(1,5)For this Case 30%  -14.27400 0.84177 0.03562
longitudinal data the normal distributed model sed. We B 0% 0.99318 0.99693 0.99369
generated data based on the underlying true coorela A 10% 5.95079 0.98675 0.00483
structures  as exchangeable (EXCH) _and autoregee_isw B 20% 9.99122 0.99425 0.05797
(AR1) with ¢=0.3 and 0.7. We considered data without
30%  13.21288 1.04650 0.11281

outliers € = 0%) as well as contaminated data=(10%, 20%
and 30%). The contamination is generated from nbrma
distribution N(100,1), we set two cases for thetaomnation,

i.e. randomly spread over the sample (case A) andamly
spread over the half uppgy values of the sample (case B).
For each scenarib000 Monte Carlo data sets were generated.
We evaluated the results using relative efficiefRE) of

Table 2. Simulation Result for Longitudinal DatawiExchangeable
Correlation Matrix witha = 0.7

IRLTS to IRLS and the mean square error (MSE) 8f Case Coeff. ¢ E(Brs)  E(Brrs) REwmusms)
which we define as 0% 1.01266 1.01187 1.01763
S IRLTS SIRLS< -1 5 10% 9.93676 1.01672 0.00433
RE = Var(f; Var(B;
IRLTS/IRLS B Var (B} ° 20%  17.31940  1.05446 0.00505
g Case 30%  23.68107 1.16184 0.00769
an
A 0% 0.99600 0.99613 1.01882
MSE = 21000(3(5) _ ‘3')2 withi =01 . 10% 1.04154 1.00103 0.00403
1000 s=1 i i ’ PRt ] 181

20% 1.05223 1.00661 0.00478
. ) . 30% 0.95609 0.99443 0.00770

whereVar(.) is the variance. We provide the expected values -
(E), and the relative efficiency resulted from simulation in 0% 105174 1.01922 0.99052
Table | - Table IV and the MSEs in Table V- Table V 5 10%  -5.20125 1.00911 0.00837

0

The efficiency of IRLTS and IRLS for clean datae(i. 20%  -10.28303  0.98818 0.00528
whene = 0%) is almost equal since RE ~ 1 for each case, b e 30%  -14.25209 0.83684 0.04304
IRL'_I'S is more efficient than IRLS when data contain B 0% 0.98159 0.99245 0.99948

outliers. The parameter estimates of IRLS are muncie ,
influenced by the outliers than the parameter egtm of F 10% 5.93523 0.98438 0.00722
IRLTS. From the expected values we can see thamie ' 20% 9.96316 0.97828 0.00489
outliers contained in the data the larger the dmrneof IRLS 30%  13.21954 1.05368 0.12544

estimates from the parameter (i.8, =5, =1), while the

parameter estimates of IRLTS are almost stablectosk to
the parameter.
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Table 3. Simulation Result for Longitudinal DataiwAutoregressive-1
Correlation Matrix witha = 03

Table 5. Mean Square Error of Parameter EstimateBdta with
Exchangeable Correlation Matrix

Case Coeff. ¢ E(Brs)  E(Bmirs) REwrusims)
0% 0.99848 0.99744 1.03077
N 10% 10.04370 1.02103 0.00247
Po 20% 17.60751 1.07994 0.00359
Case 30% 2363332 115166  0.00621
A 0% 1.00043 1.00079 1.04004
- 10% 1.00954 1.00069 0.00217
A 20% 0.96174 0.99879 0.00356
30% 0.97699 0.99897 0.00625
0% 1.01800 1.00963 1.00481
. 10% -5.40516 0.99210 0.00113
Fo 20% -10.07597 0.94809 0.00393
Case 30%  -14.18714 085628  0.05029
B 0% 0.99341 0.99621 1.00108
“ 10% 5.98712 0.99180 0.00541
A 20% 9.89834 0.99916 0.01079
30% 13.19889 1.04016 0.16313

Table 4. Simulation Result for Longitudinal Datatwhutoregressive-1
Correlation Matrix witha = 0.7

Case Coeff. € E([?,RLS) E(,ff’lRLTS) RE(rLTSIRLS)
0% 1.00024 1.00079 1.07947
N 10% 9.93814 1.00872 0.00412
Po 20% 17.52048 1.07392 0.00486
Case 30% 23.77262 1.16751 0.00790
A 0% 0.99960 0.99939 1.06915
A 10% 1.04489 1.00404 0.00379
A 20% 0.98595 1.00065 0.00481
30% 0.94520 0.99331 0.00785
0% 1.03666 1.01330 0.99589
o 10% -5.18276 1.01138 0.00618
Fo 20% -10.37403 0.97097 0.00484
Case 30%  -14.34357  0.80114 0.04723
B 0% 0.98765 0.99545 0.99343
- 10% 5.92778 0.98511 0.00464
A 20% 10.00611 0.98523 0.00461
30% 13.25732 1.07041 0.14581

The consistency of the estimators is assessed ghrou

their MSEs (see Table V and Table VI). When datataio

outliers, the MSEs of IRLTS are relatively smalhguared to

the MSEs of the classical GEE (IRLS). From the Iteae
conclude that IRLTS is robust against outliers.

a=03 a=07
Case Coeff. ¢
IRLS IRLTS IRLS IRLTS
0% 0.01664 0.01666 0.03141 0.03194
A 10% 90.44780 0.02372 88.48682 0.03765
Po 20% 291.41893 0.07749 283.90429 0.09182
Case 30% 544.84787 0.20944 540.15839 0.22414
A 0% 0.00165 0.00165 0.00299 0.00305
- 10% 0.87157 0.00233 0.94041 0.00378
A 20% 1.91855 0.00754 1.92692 0.00924
30% 3.08263 0.02001 2.82052 0.02174
0% 0.01726 0.01680 0.03467 0.03206
- 10%  41.61809 0.01801  41.89402 0.02886
Fo 20% 136.26362 0.13754 133.06421 0.03051
Case 30% 240.63699 0.28655 240.56976 0.36852
B 0% 0.00171 0.00167 0.00346 0.00318
- 10%  24.88252 0.00197  24.75140 0.00309
A 20%  82.04616 0.06984  80.97956 0.00361
30% 149.95039 0.09196 150.19042 0.11242
Table 6. Mean Square Error of Parameter EstimateBdta with
Autoregressive-1 Correlation Matrix
Case Coeff. g @=03 a=07
IRLS IRLTS IRLS IRLTS
0% 0.01309 0.01349 0.02329 0.02515
» 10% 89.85427 0.02033 87.75463 0.03249
Po 20% 292.90715 0.06774 289.43715 0.08572
Case 30% 539.61490 0.19286 543.38625 0.22402
A 0% 0.00131 0.00136 0.00231  0.00247
o 10% 0.88483 0.00192 0.86341 0.00328
A 20% 1.85020 0.00659 1.77790 0.00856
30% 2.98370 0.01864 2.71468 0.02134
0% 0.01354 0.01337 0.02704 0.02577
» 10% 87.20910 0.05218 42.39676 0.02589
Fo 20% 164.20519 0.16609 135.05622 0.02836
Case 30% 237.06421 0.34325 243.38623 0.41559
B 0% 0.00135 0.00133 0.00273 0.00258
o 10% 27.51679 0.01437 24.80085 0.00262
A 20%  86.50801 0.07905 81.76371 0.00323
30% 149.53554 0.11950 151.10469 0.13076
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V. CONCLUSION 1]

(2
(3]

Our proposed method have two different iteratiomsts
procedure, one is the iteration for the estimatibregression
parameter using IRLS method, and the other itamatofor
selecting the best subsét for calculating the parameter
estimate. We have shown that this procedure cammizie
the effect of outliers on parameter estimation; TBLcan
produce a relatively efficient and consistent eaton
compared to the classical GEE (IRLS). Base on tf&®EM
IRLTS performs much better than the classical GHénce,
robust GEE using IRLTS is a good choice for londjital
data analysis when data contains outliers.

(4]
(5]
(6]
(7]
(8]
9]
[10]

[11]
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