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Abstract—In this paper, a robust procedure for estimating 

parameters of regression model when generalized estimating 
equation (GEE) applied to longitudinal data that contains outliers is 
proposed. The method is called ‘iteratively reweighted least trimmed 
square’ (IRLTS) which is a combination of the iteratively 
reweighted least square (IRLS) and least trimmed square (LTS) 
methods. To assess the proposed method a simulation study was 
conducted and the result shows that the method is robust against 
outliers. 

Keywords—GEE, IRLS, LTS, longitudinal data, regression 
model. 

I. INTRODUCTION 

ONGITUDINAL studies are increasingly common in many 
scientific research areas, for example in the social, 
biomedical, and economical fields. In longitudinal 

studies, multiple measurements are taken on the same subject 
at different points in time. Thus, observations for the same 
subject are correlated. The analysis of data resulting from 
such studies often becomes complicated due to the within-
subject correlation. This correlation must be considered for 
any appropriate analysis method.  

Generalized linear models (GLM) as described by 
McCullagh and Nelder [1] is a standard method used to fit 
regression models for univariate data that are presumed to 
follow an exponential family distribution. The association 
between the response variable and the covariates is given by 
the link function. GLM assume that the observations are 
independent and do not consider any correlation between the 
outcome of the n observations.  Liang and Zeger [2] 
introduced an approach to this correlation problem using GEE 
to extend GLM into a regression setting with correlated 
observations within subjects. 

The GEE method of Liang and Zeger gives consistent 
estimators of the regression parameter. The parameter 
estimates are consistent even when the variance structure is 
miss-specified under mild regularity conditions.  However, 
problems can occurs when data contain outliers.   The method 
is not robust against outliers since it is based on score 
equations from the quasi likelihood method of estimation. 
The working correlation matrix would be affected by the 
outliers and also the parameter estimates. In this situation, we 
need a robust method that can minimize the effect of outliers. 

In recent years, a few authors have considered robust 
methods for longitudinal data analysis. For example, Qaqish 
and Preisser [3] proposed a resistant version of the GEE using 
M-type estimation by involving down-weighting influential 
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data points. Gill [4] proposed a robustified likelihood based 
on multivariate normal distribution.  Jung and Ying [5] 
proposed an adaptation of the Wilcoxon-Mann-Whitney 
method of estimating linear regression parameters for use in 
longitudinal data analysis under the working independence 
model. And recently, Abebe et al. [6] proposed a robust GEE 
using iterated reweighted rank-based estimation. 

In this paper, we adopt the LTS [7] method for robust 
linear regression in the sense of trimming the data for 
estimating the regression coefficients so that the observations 
with high residuals are not included in the parameter 
estimation.  In Section 2 we present a brief review of GEE. In 
Section 3 we describe our proposed method IRLTS. In 
Section 4 we discuss some results from our simulation study.   

 

II. GENERALIZED ESTIMATING EQUATION AND IRLS METHOD  

   Let Yij, j = 1, ..., mi, i = 1, ... , n  represent the jth 
measurement on the ith subject. There are mi measurements 

on subject i and N=∑ =

n

i im
1

total measurements. Assume 

that the marginal distribution of yij is of the exponential class 
of distributions and is given by: 

{ }φφθθφθ ,()(/)(exp),,( ycabyyf +−=
 

where a(.), b(.), and c(.) are given, θ is the canonical 
parameter, and φ is the dispersion parameter.   
Let the vector of measurements on the ith subject be Y i =  
[Yi1, ... ,Yimi]T with corresponding vector of means µi = [µi1, ... 
,µi mi]T and X i = [Xi1, ... ,Xi mi]T be the mixp matrix of 
covariates. In general, the components of Y i are correlated but 
Y i and Yk are independent for any i ≠ k. To model the relation 
between the response and covariates, we can use a regression 
model similar to the generalized linear models:  

g(µi) = ηi = X i β 

where µi = E(Y i|X i), g is a specified link function, and β = [β1, 
... ,βp]T  is a vector of unknown regression coefficients to be 
estimated. The GEE for estimating the p×1 vector of 
regression parameters β is is given by : 
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where V i be the covariance matrix of Y i modeled as Vi=

( ) 2/12/1
ii AαRAλ , Ai is a diagonal matrix of variance function 

V(µ ij), and R(α) is the working correlation matrix of Y i 
indexed by a vector of parameters α. Solutions to (2) are 
obtained by alternating between estimation of λ, α and θ.  

There are several specific choices of the form of 
working correlation matrix Ri(α)  commonly used to model 
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the correlation matrix of Y i. A few of the choices are shown 
below, one can refer to [1] for additional choices. The 
dimension of the vector α, which is treated as a nuisance 
parameter, and the form of the estimator of α are different for 
each choice. Some typical choices are: 
1. Ri(α) = R0 , a fixed correlation matrix. For R0 = I, the 

identity matrix, the GEE reduces to the independence 
estimating equation. 

2. Exchangeable: kjYYCor ikij ≠=      ,),( α .  

3. Autoregressive-1: ||),( kj
ikij YYCor −= α . 

4. Unstructured: jkikij YYCor α=),( .  

Solving for β is done with iteratively reweighted least 
squares (IRLS). The following is the algorithm for fitting the 
specified model using GEEs [3]  : 

1. Compute an initial estimate of GEEβ̂ , for example with 

an ordinary generalized linear model assuming 
independence. 

2. A current estimate GEEβ̂  is updated by regressing the 

working response vector 

)ˆ(ˆ µy
β

µ
βXZ −

∂
∂+=∗

 
on X. A new estimate newβ̂  is obtained by : 

∗∗−∗= ZWXXWXβ
TT 1)(ˆ
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    (2) 

where ∗W  is a block diagonal weight matrix whose ith 
block is the mixmi matrix  
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3. Use newβ̂  to update ∗== HZβXη new
ˆˆ , where  

∗−∗= WXX)WX(XH T1T .  

4. Iterate until convergence. 
 

III.  ITERATIVELY REWEIGHTED LEAST TRIMMED SQUARE 

ALGORITHM 

 
First let us briefly recall that the robust estimation of 

regression parameters using LTS method is given by: 

∑
=

=
h

i
iLTS e

1

2minargβ̂         (3) 

which is based on the ordered absolute residuals 
||...|||| 21 neee ≤≤≤ . LTS estimation is calculated by 

minimizing the h ordered squares residuals, where h can be 

chosen within 
4

1

4

3
         1

2

++≤≤+ pn
h

n
, with n and p 

being sample size and number of parameters respectively. 
When h = [n/2], , LTS locates that half of the observations 
which has the smallest estimated variance. In that case, the 
breakdown point is 50%. When h is set to the sample size, 
LTS and ordinary least square (OLS) coincide.  

In [7] Rousseeuw and Leroy shows n1/2 consistency and 
asymptotic normality of LTS in the location–scale model. 
Víšek [8] extends this to the regression model with random 

regressors, the proof for fixed regressors is in later series of 
his papers: [9][10].  

When n is very small, it is possible to generate all subsets 
of size h to determine which one minimizes the LTS criterion.  
Rousseeuw and Leroy computation of LTS based on subsets 

of size k requires � = ��
�� subsets which is usually still too 

large for realistic applications. When  n is small enough: 
1. Select h. 
2. Generate all possible subsets with k observations, 

and compute the regression coefficients, say 
��	1�, … , ��	1�. 

3. Compute the residuals using all n observations, and 
from this the LTS criterion. 

4. The LTS estimate corresponds to the ��	�� that 
minimizes the objective function (3). 
 

Rousseeuw and van Driessen [11] propose a fast 
algorithm for computing LTS. The trick is to iterate a few 
steps on a large number of starting values, and keep the 10 
(say) most promising ones. These are then used for full 
iteration, yielding the final estimate. The resulting algorithm 
makes LTS estimation faster. 

Our proposed procedure is a combination of IRLS and 
LTS methods. IRLTS estimator involves computing the 
hyperplane that minimizes the sum of the smallest h squared 
residuals and use the weighted least square estimation for β in 
each iteration. To motivate our estimator and following the 
fast LTS algorithm [11], it is convenient to write IRLTS 
algorithm with involving the residuals as follow.   

 
Concentration-step: 

1. Choose h observations. 

2. Compute β̂  based on h observations using IRLS method . 

3. Use the estimate β̂  to calculate residuals: ijijij Ye µ̂−=  

based on equation )ˆ(ˆ 1
βXµ i

−= gi  of  n observations. 

4.  Sort || ije  for j = 1, ..., mi, i = 1, ... , n   in ascending 

order: ||...|||| 1211 ijeee ≤≤≤ .  

5. Choose h observations which have the lowest h residuals, 
we denote the h observations as subset H. 

The repetitions of concentration-step will produce an 
iteration process.  

 
IRLTS algorithm: 

1. Choose h observations.   

2. Compute β̂  based on h observations using IRLS by  (2), 

we obtain )ˆ(ˆ 1
βXµ i

−= gi . 

3. Calculate residuals: ijijij Ye µ̂−=  of  n observations. 

4. Sort || ije  in ascending order: ijeee |...|||| 1211 ≤≤≤ |  

5. Choose h1 observations which have the lowest h1 

residuals, we denote as subset H1. 
6. Run concentration-step on H1 twice, and we obtain H1*. 

7. Repeat step 1- step 6 for 








h

n
 times 
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8. From the 








h

n
 results, choose the best 10 subsets Hq, 

q=1,…,10. 
9. Run concentration-step on the best 10 subsets Hq until 

convergence. 
10. Choose the best subset H. 

 
 

IV.  SIMULATION STUDY  

 

To look at the performance of the proposed method, we 
have done a simulation study by generating N=1000 
observations from 200 subjects with 5 repeated measures. The 
model for data generation is as follows: 

uij = β0+β1 xij  

where β0=β1=1, i=1,2,… 200 and j=1,2,..,5. The covariates xij 
are i.i.d. from a uniform distribution Unif(1,5). For this 
longitudinal data the normal distributed model is used. We 
generated data based on the underlying true correlation 
structures as exchangeable (EXCH) and autoregressive-1 
(AR1) with α=0.3 and 0.7.  We considered data without 
outliers (ε = 0%) as well as contaminated data (ε = 10%, 20% 
and 30%). The contamination is generated from normal 
distribution N(100,1), we set two cases for the contamination, 
i.e. randomly spread over the sample (case A) and randomly 
spread over the half upper xij values of the sample (case B). 
For each scenario 1000 Monte Carlo data sets were generated. 
We evaluated the results using relative efficiency (RE) of 

IRLTS to IRLS and the mean square error (MSE) of β̂  

which we define as 
  

�������/���� = ���	���
����������	���

����� !"
 

 

and 

#$� = "
"%%% ∑ '���

	(� − ��*+,   with 0 = 0,1"%%%
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where Var(.) is the variance. We provide the expected values 
(E), and the relative efficiency resulted from our simulation in 
Table I - Table IV and the MSEs in Table V- Table VI.  

The efficiency of IRLTS and IRLS for clean data (i.e. 
when ε = 0%) is almost equal since RE ~ 1 for each case, but 
IRLTS is more efficient than IRLS when data contain 
outliers. The parameter estimates of IRLS are much more 
influenced by the outliers than the parameter estimates of 
IRLTS. From the expected values we can see that the more 
outliers contained in the data the larger the deviation of IRLS 
estimates from the parameter (i.e. 110 == ββ ), while the 

parameter estimates of IRLTS are almost stable and close to 
the parameter. 

 

 

 

 

 

Table 1. Simulation Result for Longitudinal Data with Exchangeable 
Correlation Matrix with 3.0=α  

Case Coeff. ε )ˆ( IRLSE β  )ˆ( IRLTSE β  RE(IRLTS/IRLS) 

Case 
A 

0β̂  

0% 1.00500 1.00499 1.00178 

10% 10.08781 1.02474 0.00294 

20% 17.55050 1.08504 0.00401 

30% 23.73423 1.15940 0.00657 

1β̂  

0% 0.99846 0.99848 1.00278 

10% 0.99604 0.99948 0.00267 

20% 0.98073 0.99775 0.00393 

30% 0.94544 0.99577 0.00649 

Case 
B 

0β̂  

0% 1.02179 1.01050 0.99466 

10% -5.20456 1.00195 0.00577 

20% -10.30572 0.95625 0.01606 

30% -14.27400 0.84177 0.03562 

1β̂  

0% 0.99318 0.99693 0.99369 

10% 5.95079 0.98675 0.00483 

20% 9.99122 0.99425 0.05797 

30% 13.21288 1.04650 0.11281 

 

 

 

Table 2. Simulation Result for Longitudinal Data with Exchangeable 
Correlation Matrix with 7.0=α  

Case Coeff. ε )ˆ( IRLSE β  )ˆ( IRLTSE β  RE(IRLTS/IRLS) 

Case 
A 

0β̂  

0% 1.01266 1.01187 1.01763 

10% 9.93676 1.01672 0.00433 

20% 17.31940 1.05446 0.00505 

30% 23.68107 1.16184 0.00769 

1β̂  

0% 0.99600 0.99613 1.01882 

10% 1.04154 1.00103 0.00403 

20% 1.05223 1.00661 0.00478 

30% 0.95609 0.99443 0.00770 

Case 
B 

0β̂  

0% 1.05174 1.01922 0.99052 

10% -5.20125 1.00911 0.00837 

20% -10.28303 0.98818 0.00528 

30% -14.25209 0.83684 0.04304 

1β̂  

0% 0.98159 0.99245 0.99948 

10% 5.93523 0.98438 0.00722 

20% 9.96316 0.97828 0.00489 

30% 13.21954 1.05368 0.12544 
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Table 3. Simulation Result for Longitudinal Data with Autoregressive-1 
Correlation Matrix with 3.0=α  

Case Coeff. ε )ˆ( IRLSE β  )ˆ( IRLTSE β  RE(IRLTS/IRLS) 

Case 
A 

0β̂  

0% 0.99848 0.99744 1.03077 

10% 10.04370 1.02103 0.00247 

20% 17.60751 1.07994 0.00359 

30% 23.63332 1.15166 0.00621 

1β̂  

0% 1.00043 1.00079 1.04004 

10% 1.00954 1.00069 0.00217 

20% 0.96174 0.99879 0.00356 

30% 0.97699 0.99897 0.00625 

Case 
B 

0β̂  

0% 1.01800 1.00963 1.00481 

10% -5.40516 0.99210 0.00113 

20% -10.07597 0.94809 0.00393 

30% -14.18714 0.85628 0.05029 

1β̂  

0% 0.99341 0.99621 1.00108 

10% 5.98712 0.99180 0.00541 

20% 9.89834 0.99916 0.01079 

30% 13.19889 1.04016 0.16313 

 

 

Table 4. Simulation Result for Longitudinal Data with Autoregressive-1 
Correlation Matrix with 7.0=α  

Case Coeff. ε )ˆ( IRLSE β  )ˆ( IRLTSE β  RE(IRLTS/IRLS) 

Case 
A 

0β̂  

0% 1.00024 1.00079 1.07947 

10% 9.93814 1.00872 0.00412 

20% 17.52048 1.07392 0.00486 

30% 23.77262 1.16751 0.00790 

1β̂  

0% 0.99960 0.99939 1.06915 

10% 1.04489 1.00404 0.00379 

20% 0.98595 1.00065 0.00481 

30% 0.94520 0.99331 0.00785 

Case 
B 

0β̂  

0% 1.03666 1.01330 0.99589 

10% -5.18276 1.01138 0.00618 

20% -10.37403 0.97097 0.00484 

30% -14.34357 0.80114 0.04723 

1β̂  

0% 0.98765 0.99545 0.99343 

10% 5.92778 0.98511 0.00464 

20% 10.00611 0.98523 0.00461 

30% 13.25732 1.07041 0.14581 

 

The consistency of the estimators is assessed through 
their MSEs (see Table V and Table VI). When data contain 
outliers, the MSEs of IRLTS are relatively small compared to 
the MSEs of the classical GEE (IRLS). From the result we 
conclude that IRLTS is robust against outliers.  

 

 

Table 5. Mean Square Error of Parameter Estimates for Data with 
Exchangeable Correlation Matrix   

Case Coeff. ε 
3.0=α  7.0=α  

IRLS IRLTS IRLS IRLTS 

Case 

A 

0β̂  

0% 0.01664 0.01666 0.03141 0.03194 

10% 90.44780 0.02372 88.48682 0.03765 

20% 291.41893 0.07749 283.90429 0.09182 

30% 544.84787 0.20944 540.15839 0.22414 

1β̂  

0% 0.00165 0.00165 0.00299 0.00305 

10% 0.87157 0.00233 0.94041 0.00378 

20% 1.91855 0.00754 1.92692 0.00924 

30% 3.08263 0.02001 2.82052 0.02174 

Case 

B 

0β̂  

0% 0.01726 0.01680 0.03467 0.03206 

10% 41.61809 0.01801 41.89402 0.02886 

20% 136.26362 0.13754 133.06421 0.03051 

30% 240.63699 0.28655 240.56976 0.36852 

1β̂  

0% 0.00171 0.00167 0.00346 0.00318 

10% 24.88252 0.00197 24.75140 0.00309 

20% 82.04616 0.06984 80.97956 0.00361 

30% 149.95039 0.09196 150.19042 0.11242 

 

Table 6. Mean Square Error of Parameter Estimates for Data with 
Autoregressive-1 Correlation Matrix 

Case Coeff. ε 
3.0=α  7.0=α  

IRLS IRLTS IRLS IRLTS 

Case 
A 

0β̂  

0% 0.01309 0.01349 0.02329 0.02515 

10% 89.85427 0.02033 87.75463 0.03249 

20% 292.90715 0.06774 289.43715 0.08572 

30% 539.61490 0.19286 543.38625 0.22402 

1β̂  

0% 0.00131 0.00136 0.00231 0.00247 

10% 0.88483 0.00192 0.86341 0.00328 

20% 1.85020 0.00659 1.77790 0.00856 

30% 2.98370 0.01864 2.71468 0.02134 

Case 
B 

0β̂  

0% 0.01354 0.01337 0.02704 0.02577 

10% 87.20910 0.05218 42.39676 0.02589 

20% 164.20519 0.16609 135.05622 0.02836 

30% 237.06421 0.34325 243.38623 0.41559 

1β̂  

0% 0.00135 0.00133 0.00273 0.00258 

10% 27.51679 0.01437 24.80085 0.00262 

20% 86.50801 0.07905 81.76371 0.00323 

30% 149.53554 0.11950 151.10469 0.13076 
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V. CONCLUSION 

 
Our proposed method have two different iterations in its 

procedure, one is the iteration for the estimation of regression  
parameter using IRLS method, and the other iteration is for 
selecting the best subset H for calculating the parameter 
estimate. We have shown that this procedure can minimize 
the effect of outliers on parameter estimation; IRLTS can 
produce a relatively efficient and consistent estimator 
compared to the classical GEE (IRLS). Base on the MSE, 
IRLTS performs much better than the classical GEE. Hence, 
robust GEE using IRLTS is a good choice for longitudinal 
data analysis when data contains outliers.  

 

 

REFERENCES 
[1] P. McCullagh and J.A. Nelder, Generalized Linear Models. London : 

Chapmann and Hall, 1989. 
[2] K.Y. Liang and S.L. Zeger, “Longitudinal data analysis using 

generalized linear models”, Biometrika, vol 73, pp. 13-22, 1986. 
[3] B.F. Qaqish and J.S. Preisser, “Resistant fits for regression with 

correlated outcomes an estimating equations approach”, Journal of 
Statistical Planning and Inference, vol. 75, pp. 15-431, 1999. 

[4] P.S. Gill, “A Robust Mixed Linear Model Analysis for Longitudinal 
Data”, Statistics in Medicine, vol. 19, pp. 975-987, 2000. 

[5] S.H. Jung and Z. Ying, “Rank-Based Regression With Repeated 
Measurements Data”, Biometrika, vol. 90, pp. 732-740, 2003. 

[6] Abebe, A., McKean, J. W.  & Kloke, J. D., Bilgic, Y. “Iterated 
Reweighted Rank-Based Estimates for GEE Models”, submitted. 

[7] R.J. Rousseeuw and A.M. Leroy, Robust Regression and Outlier 
Detection. New York: Wiley, 1987. 

[8] J.A. Víšek, “The Least Trimmed Squares – random carriers”. Bulletin 
of the Czech Econometric Society, vol. 6, pp. 1-30, 1999. 

[9] J.A. Víšek, The Least Trimmed Squares. Part II: √�-consistency. 
Kybernetika, vol. 42, pp. 181-202, 2006a. 

[10] J.A. Víšek, “The Least Trimmed Squares. Part III: Asymptotic 
normality”. Kybernetika, vol. 42, pp. 203-224, (2006b). 

[11] P.J. Rousseeuw, and K. van Driessen, “ Computing LTS Regression for 
Large Data Sets”. Data mining and Knowledge Discovery, vol. 12, pp. 
29-45, 2006. 

 
 
 
 

 
   


