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The Scheme of 10" Order Implicit Runge-K utta Method to Solve the First Order
of Initial Vaue Problems

Z. Bahrit, L. Zakaria®®, Syamsudhuhat

Abstract—To construct a scheme of implicit Runge-Kutta
methods, there are a number of coefficients that must be determined
and satisfying consistency properties and Butcher’s simplifying
assumptions. In this paper we provide the numerica simulation
technique to obtain a scheme of 10 order Implicit Runge-Kutta
(IRK10) method. For simulation process, we construct an agorithm
to compute all the coefficients involved in the IRK10 scheme. The
algorithm is implemented in a language programming (Turbo
Pascal) to obtain al the required coefficients in the scheme. To show
that our scheme works correctly, we use the scheme to solve Hénon-
Heiles system.

Keywords—ODEs, 10" order IRK method, numerical technique,
Hénon-Heiles system

|. INTRODUCTION
L et a first order ordinary differential equation system

(ODES)
y'=f(xy(x)
D
together with
y(xo) =Y %)

In (1), where the “prime“indicates differentiation with
respect to x, y is a D-dimensional vector (yeiRD), and

f i RXR® > R®. The ODES (1)-(2) is the well-known

the first order of initial value problem. To solve problem (1)-
(2) can be used analytical and/or numerical procedures. But,
for solving the special problems (Hamiltonian and Divergen
Free systems, for examples) and taking efficiency and
effective caculations, some mathematicians recommended to
use numerical approximations ([1-4,5]). One of numerical
methods which can be used to solve (1-2) which is enough
recognized and a lot of used is Runge-K utta method.

Definition : Let b,,a,,and ¢, (i, j =12,---,s) bered

ij?
numbers. The method

yn+l = yn +1 Z bl fi (3)
i=1

fi:f[tn+clt Yot D3, fj]
j=1
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is called an s-stage Runge-Kutta method. When @;; = 0 for

i < ] the method is called an explicit Runge-K utta method.
Ifaj=01i < ] andleast one a; # 0, the method is called a

diagonal implicit Runge-Kutta method. If al of the
diagonal elements are identical, a; = y for i = 1,2,...,s, the
method is called a singly diagonal implicit Runge-Kutta
method. In all other cases, the method is called an implicit
Runge-Kutta method. The Runge-Kutta methods are often
given in the form of a tableau containing their coefficients
namely

G a, a, - 4 4
C, 8y 8y vt Ay
C ayg a4, - Ag

b b, - b,

where C :Zs:a” i=12---,s.
=t

Consistency in the Runge-Kutta methods is investigated
by using a Taylor series expansion. Any s-stage Runge-Kutta

S
process of the form (3) or (4) is consistent if Zh =1

i=1
Butcher in [6] states that this condition is necessary and
sufficient condition for the local truncation error of the

method to have asymptotic behavior O(t )

There are some advantages to use Implicit Runge-Kutta
(IRK) methods (see [6-8]). (1) IRK methods usualy are
required for systems whose solutions contain rapidly
decaying components (see [6]); (2) Some methods may also
be used in preserving the symplectic structure of
Hamiltonian systems; (3) IRK methods (Gauss quadratures)
have a number of big potency for the computing of integrate
the geometry; (4) high order integrator to be used by the
reason of doubled accuracy is recommended; (5) to evaluate
the vector field "costly", all stage-sin IRK can be evaluated
by parallel and; (6) IRK can be solve the ordinary differential
equation (ODE) or system (ODES) in general.

To construct a scheme of IRK methods, Butcher
discovered the existence of s-stage methods of order 2s, for
all s. He used simplifying assumptions to find these methods.
The simplifying assumptions are



Az)=2ac" = 1=12...5 0=12....2

=
B(p)=ibic.“‘l—% q=12,..,p ®)
C(r ):Zslbici‘*’laij =%(1— c?) i=12,...s q=12,..,r

Based on consistency property and Butcher’s simplifying
assumptions, Hairer et.al (2007)[7] and Ismail (2009)[8]
derive some IRK methods new analytical procedures.

In analytical procedure, we can use the idea of collocation
to derive IRK methods ([4],[8]). Unfortunately, for the stage
of stage s = 3, constructing an integrator IRK using analytical
procedure will be difficult because there are some values of
b,c,anda; (i,j=12,...,s)must be determined.
Therefore, the numerical technique or procedure is an
aternative choice to use. In this procedure, we can use
computer to determine the values of ¢ (i=12,...,9) ,
b and g (,j=12,...,9).

Notice that one important property of IRK method is
symplecticness. AnIRK method (4) is symplectic if it satisfy
the following condition ([9])
bb, -ba;-ba; =0 ,i,je{l2,..,5}.

Il. RESULT AND DISCUSSION

In this section, we describe how to get a class of 10" order
IRK method using computer simulation to obtain all
Butcher’s coefficient values (4) based on Butcher’s
simplifying assumptions (5).

Setting k=1 = j=s=1,2,3,4,5into first equation in
(5), we have the following systems

&, ta,+a;+ta,ta; =0 (6.1)
Ay + 8yt ta,+ays=C (6.2)
By + gy + gy + 8y + 85 = G (6:3)
au+a,+a,y+a,+a,=C (6.4)
85 +a; ta;tay +a: =G (6.5)
&0, + 8,0, + BgCy + 8, C, + 8 G = 36 (7.1)
8,C, + BsCy + By + By Cy +8Cs = 3G (7.2
8u,C, + 8gyC) + BeaCy + B3 Cy + 8 G = 3C (7.9
8,,C 3,0, + 8456 +3,Cy + G5 = %Ci (7.4)
85,C; + 85,C, + BeeCy +85,Cy +8esCs = 3G (75)
8,G +8,C +8C +a,C, +aG =1G  (81)
8y +8,C, +8C +8,,C) +asG =3C (82
8 +8pC +8Cy +8,C, +8xC =3C (83
8,6 +8,C,° + Gy +8,,C,° Tl =1C (8.4)
8,G” 850 +aCy + G, +agG =16 (85)
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8,G° + 8,0, + 8t +a,c, +aC =3¢ (9)
0+ 8y + Gy +BCy + G = 3G (92)
BiC + B B By G = 3G (93)
a4lC13 + a42023 + a43%3 + a44C43 + a45053 = %Cj (94)
3G, +86,C, + 8 Cy + 85, + BeCy = 4G (9.5)
a6’ +a,c' +ays’ ta,ttas =1 (10
8,C" +8,,C," + 3Gy +8,C, + G =1C  (102)
8,6 +a,C T2 + a0 +asG =1 (109
3'41(:14 + a42C24 + a43(:34 + 8.44044 + 3-45054 = %Ci (10.4)
85,0 + 8,0, +85C, +8yC, +agG =1C  (105)

Then, from second equation in (5) we have the following
systems

b +b,+b,+b, +b, =1 (11.1)
bc +b,c, +bec; +b,c, +hc =3 (11.2)
bc’ +b,c,” +bc,’ +b,c,’ +be’ =3 (11.3)
bc,’® +b,c,’ +b,c,’ +b,c,’ + b’ =1 (11.4)
be’+bc,’ +be +bec,’ +het=1 (11.5)

Equations (11.1)-(11.5) are solved respect to with
b (i=12,3,4,5), wehavethefollowing form
bl_{ 562(-3+C4(4—6%‘)+4°5+203(2-305+C4(-3+605))))}
60(c1-c2)(c1-c3)(c1-C4)(C1-C5)
{(504(3‘4%)+3(4+505)+ 503(34%+C4(4+605))+}
bo=

(12-15c4+5(-3+4c4)05-503(3-4cs +C4 (-4+605)) +

(12.1)

501 (3-4c5+C4(-4+605) +e3(-4+c4(612c5) + 65)))
60(c1-c2)(co-c3)(C2-C4)(C2-Cx)
12-15c4+5(-3+4c4)05-5¢ (3-405+C4 (-4+605)) +
b= 5¢1(-3+C4(4-605)+4c5+2cp (2-3c5 + C4(-3+605))))}
60(c1-c3)(c2-c3)(c3-C4)(C3-C5)
{503(34%)+3(4+5C5)+ 5co(3-4c5+c3(-4+605)) +}
bg=

(12.2)

(12.3)

501 (3-4c5+c3(-4+605)+Cp (-4+c3(6-1205) +605)))
60(c1-c4)(-c2+C4)(-c3+C4)(C4-C5)
{(12-1563+5(-3+403)C4-502(?r4C4+03(-4+604))+
b= 501 (-3+c3(4-6c4) +4cq +2cp(2-3c4 +c3(-3+6¢4))))
60(c1-C5)(C2-05)(C3-C5)(C4-C5)

(12.4)

(12.5)

Equations  (6.1)-(10.5) solved  respect
a; (i,j=12,3.4),we have the following form
1
C2(C3+04+05))- 3001 (030405 +C2(G304 HC3 +04)s)))
80(c1-¢)(e1-G3)(C1-C4)(C1-G5)

{cf (3013_- 30c3c4Cs - Scf (c3+c4+C5)+10cq (c4C5 + €3 (C4 +C5 ))}
60(c1-c2)(c2-c3)(c2-c4)(c2-C5)

to  with

{q(lzcﬁmmcs-ﬁf@z@m@ +202(cae Hog )5

a= (13.1)

(13.2)

2=
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| B o +a0cacien +5c2 (¢ o + o5) 100 (cacs +0 (ca +05))|
s 60(cy-c3)(c2-C3)(c3-C4)(c3-C5)

{cf (BCJ?_’ -30cpc3cs -5 cf (cp +c3+c5)+10cq (c3c5+Co (C3+C5 )))}
60(c1-c4)(-c2 +C4)(-c3+c4)(C4*C5)
{12-1563 +5(-3+4c3)cyq-5¢2 (3-4cq +c3(-4+6C4)) }

a4=

+5¢1 (-3+c3(4-6¢c4)+4cqg +2¢o (2-3c4 + €3(-3+6C4)))
60(c1-c5)(c2 +c5)(c3+C5)(C4 +C5)

(B (a3 10050304 +5 B e+ +05)- 100 (caca +ea(o5 <))
g 60(c1-C2)(q1-G3)(CL-C4)(CL-05)

c2(c2 (-1202+%c3c4c5+15c§ ((‘3+-c:4+c:5)-20c2 (c3c4+(03+c4)c5))
+5(~1((3c§-1203c4cs— 4c§((:3+c4+cs)+602 (0304+(c3+c4)05))))

60(¢16y)(C5C3)(Cp 64 )Gy C5)

{c%(5c1<c%+ec4os-zc2<C4+os)>)+<:2<-3c§-1oc405+5c2(c4+05))}

a =

z 60(01-03)(Cp-03)(03-C4)(03-C5)
(B a3 1005550, 031051 516 05 25 576
N B(cy-c) ) 030a)ca 0s)
(B e 2pcarea) sep Ao amylozica))|
N 80(c15)C2 053 +05)(e 05)

{C%(Rz (C% +6c4c5-2c3(c4 *+C5))+C3 (-3C§ -10c4c5+5¢3 (C4+Cs)))}
60(ct-c2)(cr-c3)(ct-c4)(c1-C5)

ag1=

{4 (c3 (33 +100405-5c3(c4 +c5))-501 (5 +6cacs 203 (¢4 +¢5)) |
60(c1-c )(c2-c3)(c2-ca)(Cc2-C5)

03(03(03(1265 +20005-1503(04:+05))-50p (363 +60405-403(Ca + 05 ) +

| 501200 (265 +60405-303 (4 +05)+ 3 (35 - 6045 +403(04 +05))
s 60(c1-C3)(C2-a)(03-C4)(C305)

ag2=

{C§ (c3(-10c1¢2 +5(c1 +c2)c3 -3C§ )+5(6c1c2-2(c1 +C2)c3 +C§ )¢5 )}
azq=
60(c-cq)(-cp +cq)(-c3+cq)(Cq+C5)

{c% (c3(-10c1cp +5(01+C2)C3-3C§ )+5(6c1C2-2(cp +cp)c3 +c§ )c4))}
60(c1-c5)(c2 +5)(C3+C5)(C4 +C5)

5=

{( G (cat100p03 451 vea)ea-35) 8(60203-2ca +e)ea +c)c5) |
60(c1-c2)(Cc1-c3)(C1-C4)(C1-C5)

an=

{Cﬁ (7 (106103-5(01+C3)C4+3C‘21) -5(6c1¢3- 2(c1 +C3)C4 +C§) C5)}
60(c1-c2 )(c2-¢3)(c2-C4)(C2-C5)

ag2=

:{cf, (c4 (10c1€-5(c1 ) ¢4-+363)-5 (Be1ca-2(c1 +c2)cq +¢5)c)|
3 60(c;-¢3)(c2-C3)(c3-¢4)(c3C5)

c4(c4(30c1Ccpe3-20(Cpc3+e1 (Cp +C3))C4 +15(Cp +Cp +C3) ci—lZci)+

_ |5(-12cicoc3 +6(coc3+ 01 (C2 +03)) 4 -4ey 62 +°3)°§1 +3C4C§) G5)

60(c1-C4)(-C2+C4)(-C3+C4)(C4+C5)
{(Cﬁ (30c1cpe3-10(c2c3+01 (2 +€3))ea +5(cy +ep +3) 0421 -304921))}
60(c1-05)(c2 +5)(c3+C5)(C4*C5)

as5=

{Cé (30coc3e4-10(c3c4 +C2 (C3+C4))C5+5(C2 +03+C4)C§ -30505 )}
60(c1-c2)(c1-c3)(cL-C4)(C1-C5)

a51=

{Cé (-30c1c3¢4 +10(c3e4 +¢1 (C3+C4))C5-5(c +C3+Ca )Cé +3c§ )}
60(c1-c )(c2-c3)(c2-c4)(c2-C5)

as2

{cé (-30cycocg +10(cpcg +1 (€2 +C4))C5-5(c) +Cp +Cq )cé +3cg)}

%37 60(c1-c3)(c2-C3)(c3-c4)(c3-C5)

(13.3)

(13.4)

(13.5)

(14.1)

(14.2)

(14.3)

(14.4)

(14.5)

(15.1)

(15.2)

(15.3)
(15.4)

(15.5)

(16.1)
(16.2)

(16.3)

(16.4)

(16.5)

(17.1)

(17.2)

(17.3)
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{cg (-30c1cpc3+10(coc3 +¢1 (Co +€3))e5-5(c1 +Co +C3 )cé +3cg )}

= 60(c1-C4)(-Co +C4)(-C3+C4)(C4 *+C5) (17.4)
5 (-60010p0304 +30(C20304 +01 (G304 +C2 (03 +04))05-20(Caca
ceyciratez ey ey e )

) 800170562 #0505 705) (17.5)

In (12.1)-(17.5), if we set ¢, (i =1,2,3,4,5) Wwith a
specific value, then we obtain b (i =1,2,3,4,5)ad
a; (i,j=12,3,4,5).

In IRK methods, ¢, (i =1,2,...,s) saisfies S C,:E.
%572
Therefore, Sis ¢ =21 for 10" order IRK.
i=1 I 2
To make our computer simulation work efficient, we
design an algorithm to find ¢, (i = 1,2,3,4,5) which must

5

fulfill Z b =1 and
i=1

pseudo code as below :

ZS: C :zl. The algorithm is written in
= 2

Deter mining_The Butcher_Coefficients 10" order IRK
{Name of Algorithm}

{This algorithm is used to the determination simulation assess
the Butcher’s coefficients for the 101 order IRK method with
thechoiceassess 0 < ¢, <1,i = 1,2,3,4,5. a random}

{Early Condition

The ¢ (i=12,3,4,5) values selected random processing
by using facility Randomize. Then, using the values,
b (i=1234,5,adw (i,j=12,...,5) vaues will
be obtained.

The values satisfy i b =1

i=1

5 5
c=Y4a,and > c=25 ,i=1.5}
j=1 i=1
{Final Condition
¢ (i=12,34)5), b (i=12,34,5) and

a; (i,j=1,2,3,4,5) values as Butcher’s coefficients for
the 10" order IRK method are obtained.}

DECLARATION

Label 10 | : integer

cl, c2, c3, ¢4, c5,b1,b2, b3,b4,b5,a11,a12,a13,a14
,a15,a21,a22,a23,a24,a25,a31,a32,a33,a34,a35,a41
,842,a43,ad4,845,851,a52,a53,a54,a55: redl;

function f1(c1,c2,c3,c4,c5:real):real
begin

f1  setting the rhs. Of equation 12.1 here
RETURN (f1)

function f2(c1,c2,c3,c4,c5:red):rea
begin
f2 — setting the rhs. Of equation 12.2 here
RETURN (f2)
function f3(c1,c2,c3,c4,c5:real):real

INSIST Vol. 1 No. 1, October 2016 (20 - 24)



begin

f3 « setting the rhs. Of equation 12.3 here
RETURN (f3)
function f4(c1,c2,c3,c4,c5:redl):rea
begin

f4 — setting the rhs. Of equation 12.4 here
RETURN (f4)
function f5(c1,c2,c3,c4,c5:real):rea
begin
f5 « setting the rhs. Of equation 12.5 here
RETURN (f5)

DESCRIPTION
BEGIN
10:

Randomize
Repeat

¢l « Random c2 — Random
c3 « Random c4 — Random

¢c5 « Random

until ((abs(cl+c2+c3+c4+c5 — 2.5) <= 0.0000001) and
(c1>0) and (c2>0) and (c3>0) and (c4>0) and (c5>0) and
(c1<>c2) and (c2<>c3) and (c3<>c4) and (c4<>c5) )

BEGIN

bl ~ fl(cl,c2,c3,c4,c5) b2 ~ f2(cl,c2,c3,c4,c5)
b3 ~ f3(cl,c2,c3,c4,c5) b4 ~ f4(cl,c2,c3,c4,c5)
b5 ~ f4(cl,c2,c3,c4,c5)
if (((abs(bl+b2+b3+b4+b5 - 1) > 0.0000001) or (b1<0)
or (b2<0) or (b3<0) or (b4<0) or (b5<0)) ) then goto 10

else

all — setting the rhs. Of equation 13.1 here

al2 — settingtherhs

al3 ~ setting the rhs.
ald — setting the rhs.
al5 — setting the rhs.
a2l ~ setting the rhs.
a22 — setting the rhs.
a23 — setting the rhs.
a24 — setting the rhs.
a25 — setting the rhs.
a3l — setting the rhs.
a32 ~ setting the rhs.
a33 ~ setting the rhs.
a34 — setting the rhs.
a35 ~ setting the rhs.
a4l — setting the rhs.
a42 — setting the rhs.
a43 — setting the rhs.
ad4 — setting the rhs.
ad5 — setting the rhs.

abl — setting the rhs.
ab2 — setting the rhs.
ab3 ~ setting the rhs.
ab4 — setting the rhs.

. Of equation 13.2 here
Of equation 13.3 here
Of equation 13.4 here
Of equation 13.5 here
Of equation 14.1 here
Of equation 14.2 here
Of equation 14.3 here
Of equation 14.4 here
Of equation 14.5 here
Of equation 15.1 here
Of equation 15.2 here
Of equation 15.3 here
Of equation 15.4 here
Of equation 15.5 here
Of equation 16.1 here
Of equation 16.2 here
Of equation 16.3 here
Of equation 16.4 here
Of equation 16.5 here

Of equation 17.1 here
Of equation 17.2 here
Of equation 17.3 here
Of equation 17.4 here

abb ~ setting therhs. Of equation 17.5 here

23

BEGIN

Write(cl, 2, €3, ¢4, c5,b1,b2, b3,b4,b5,
,all,al2,al13,a14,al15,a21,a22,a23,a24,a25
,a31,a32,a33,a34,a35,a41,a42,a43,a44,a45

,851,852,a53,a54,a55)
end
END.
Implementing the algorithm to TURBO PASCAL

programming, we have a the 10" order of implicit Runge-
Kutta methods that given in the form of a tableau containing
their coefficients below

Table 1. The Butcher’s coefficients for the 10 order IRK

0.00062327669 | 0.00063421625 0.00001105145 -0.00000999963 0.00000344788  0.00000094280
0.62262155069 | 0.09617192074 -0.08577858789 0.19691976268 0.44098804083 -0.02567958566
0.68561704247 | 0.09620099283 -0.05393518544 0.22869146117  0.44069256651 -0.02603279259
0.30589831341 | 0.10069140845 -0.57368596565 0.50477982176 0.31903127918 -0.04491823033
0.88523974386 | 0.09527844353 -0.20783782461 0.51158700582 0.44878101607 0.03743110305

I1l. NUMERICAL EXPERIMENT

In this section, we present an application of our scheme to
solve Henon-Heiles problem. The Hénon-Heiles problem is
typically non integrable system and have simultaneously and
quasi periodic solutions. The Hénon-Heiles system is defined
by (see [8])

H=T+V, T=%(pf+p22), V=%(qf+q§)+(q12qz)-%qzz (18)

We apply the 10" order IRK method (IRK10) to solve
problem (18). The results of using IRK 10 is displayed in the
figure 1b. To show them, we used MATHEMATICA.

The figures displayed are Poincaré sections (i.e. sections
of various orhits), for an energy E and time-stepst. To obtain
our Poincaré sections, we use the idea of linear interpolation
[10]. The Poincaré sections is the integration results as
points of intersection of the flow with the g, = O-plane. Here

we set 62 initial points.

In all graphs, the blue dots indicate that the points are
moving up to g, = 0-plane whereas the red dots indicate that
the points are moving down the plane. Fig. 1.b shows that the
scheme of 10" IRK method can be used to solve Hénon-
Heiles problem (18).

In Fig. 1.a and Fig. 1.b, we show a poincaré section for
Hénon-Heiles (18) using the 10" order IRK method whose
tableau are given in Table.1 and a standard 4™ order explicit
Runge-Kutta methods, respectively. We set an energy
E=1.25,t = 0.01, and the number of iterations = 100,000 for
producing the figures.

INSIST Vol. 1 No. 1, October 2016 (20 - 24)



Fig. 1a. An Hénon-Heiles’s
Poincaré sections was
produced by using a standard
4" order ERK method.

Fig. 1b. An Hénon-Heiles’s
Poincaré sections was produced
by using an IRK 10 method.

IV. CONCLUSION

Based on theoretical surveying, algorithm designing and

implementing, and numerical problem solving before, we

conclude that we can construct a scheme of 10" order of IRK

methods via simulating to choose ¢, (i =1..5) values that
) s=5 5 5

satisfy Zci :2%,2 b =1 and c = z a,i
i=1 i=1 j=1

1.5

Although, we have not exact values for c;,b, and
a;, (i, ] =1,2,3.4), but our schemes can solve a problem

of the first order of ordinary differential equation system like
classical methods (Gauss-Legendre for example).
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